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Framework

(Xk)k∈N i.i.d. ≥ 0 with c.d.f. F (.).

Renewal process N defined by

N(x) := sup







n ≥ 0

∣

∣

∣

∣

∣

∣

Sn :=
n

∑

j=1

Xj ≤ x







, x ≥ 0,

and associated renewal function

U(x) := E[N(x)] =
∞
∑

n=1

P[Sn ≤ x ] =
∞
∑

n=1

F ∗(n)(x), x ≥ 0.
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Framework

U(x) = mean number of occurances of a certain recurrent event
before time x .

−→ behaviour as x → ∞ ?

In what follows, two cases :

Xk ’s lattice ( ⇐⇒ Xk with values in dN for some d , d = 1
onward),

Xk ’s non lattice.
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Expansion of order 1

If X1 admits a first moment µ then Blackwell’s ”elementary”
renewal theorem =⇒

U(x + h)− U(x) −→
h

µ
, x → +∞, x ∈ R+, h > 0, (non lattice),

U(k + 1)− U(k) −→
1

µ
, k → +∞, k ∈ N, (lattice).

Hence first order expansion :

U(x) ∼
x

µ
, x → ∞
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Expansion of order 2

If X1 admits a second moment µ2 = E[X 2
1 ] then second order

expansion (e.g. Feller (1965))

U(x) =



















x

µ
+

µ2

2µ2
+ o(1), non lattice

x

µ
+

µ2 + µ

2µ2
+ o(1), lattice.

as x → ∞,

One even has U(x)− x
µ
≥ 0, ∀x ≥ 0.
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The o(1) term

We set v(x) := U(x)−
x

µ
−

µ2

2µ2
. (non lattice)

−→ Behavior of v(x) as x → ∞ ?

Stone (1965) : in the case where X1 is light tailed

( ⇐⇒ E[eR0X1 ] < +∞ for some R0 ∈ (0,+∞]) then

v(x) = O(e−rx), x → +∞

for some r > 0.

Asmussen (1995) : in the case where X1 has rational Laplace
Transform then Explicit expression of v(x) (i.e. of U(x)).

Mitov and Omey (2014) provide intuitive approximations of
U(x), and in particular of the v(x) term, for a large class of
X1.
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The result, non lattice case

Theorem (Dombry, R. (2014))

Let us suppose that X1 is non lattice, light tailed with

E[eR0X1 ] < +∞, and satisfies the following assumption :

(A) the equation g(z) := E[ezX1 ] = 1 has a finite number of

solutions in SR0 = {z ∈ C, 0 < ℜ(z) < R0}.

Let z0 = 0, z1, . . . , zN be these solutions. Then, for all r < R0,

v(x) =
N
∑

j=1

ρje
−xℜ(zj ) cos(xℑ(zj) + ϕj) + o(e−rx), as x → +∞,

In the case g ′(zj) 6= 0, ρj and ϕj ∈ (−π, π] are such that

ρje
iϕj = 1

zjg
′(zj )

.
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The result, lattice case

Theorem (Dombry, R. (2014), Ct’d)

Let us suppose that X1 is lattice, light tailed R0 ∈ (0,+∞].
Let z0 = 0, z1, . . . , zN the solutions of the equation

g(z) := E[ezX1 ] = 1 in the domain

SR0 = {z ∈ C; 0 < ℜ(z) < R0,−π ≤ ℑ(z) ≤ π}. Then, for all
r < R0, v(k) has the asymptotic expansion

v(k) =

N
∑

j=1

ρje
−kℜ(zj ) cos(kℑ(zj)+ϕj)+o(e−rk), k → +∞, k ∈ N,

In the case g ′(zj) 6= 0, ρj and ϕj ∈ (−π, π] are such that

ρje
iϕj = 1

(e
zj−1)g ′(zj )

.
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Prior comments

Main practical issue is solve g(z) = 1 with g(z) := E[ezX1 ]

SR0
domain, non lattice

R0
R0

0 0

iπ

SR0
domain, lattice

−iπ
z1

z̄1

z2

z̄2

zN

z̄N

z1

z2

zN

z̄2

z̄N

No trivial solution in C (except z = 0).
E.g. X1 ∼ U([0, 1]) we get to solve

ez = z + 1, z ∈ C.
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Elements of Proof (lattice case), Stone (1965) revisited

Recall that v(k) := U(k)− k
µ
− µ2+µ

2µ2 and that X1 concentrated on
N.

Set Sn =
∑n

j=1 Xj , S0 = 0, and

uk :=
∞
∑

n=0

P[Sn = k] = U(k)− U(k − 1), k ∈ N.

Step 1 : one proves that

uk −
1

µ
=

1

2µ
+

1

2π

∫ π

−π

ℜ

(

e−ikθ

[

1

1− g(iθ)
−

1

µ

1

1− e iθ

])

dθ

(recall that g(iθ) = E[e iθX1 ])
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Elements of Proof (lattice case), Stone (1965) revisited

Step 2 : Integrate z 7→ 1
1−E[e iθX1 ]

− 1
µ

1
1−e iθ

on contour ∂Sr for

r < R0 and use Theorem of Residue in order to get

uk −
1

µ
= −

N
∑

j=1

ℜ

[

e−kzj

g ′(zj)

]

+ o(e−rk)

(in the case g ′(zj) 6= 0, for ease of presentation...).

Step 3 : use the fact that

v(k) =
∞
∑

m=0

[−v(k +m + 1) + v(k +m)] =
∞
∑

m=0

[−uk+m+1 + 1/µ]

then conclude.
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The (simple) model

Component with generic lifetime distribution L

Replaced at each failure time with new component with
probability p ∈ (0, 1).

Total Lifetime : T =
ν

∑

k=1

Lk , where L1, L2, ... i.i.d. and

ν ∼ G(1− p).

Laplace Transform of T , E[T ], Var(T ) computable, what about
survival function ?
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Estimate for lifetime survival function

Set

H̄(x) := P[T > x ] = P

[

ν
∑

k=1

Lk > x

]

−→ Expansion of H̄(x) as x → ∞ ?

Main Assumption :

L bounded by some M > 0,

density f (x) of L is decreasing (e.g. holds if DFR).
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Estimate for lifetime survival function

In that case we have the expansion for some R large enough

H̄(x) =
N
∑

j=1

ℜ

[

1− 1/p

1/p − f (0+)E[ZezjZ ]
e−xzj

]

+ o(e−rx), ∀r > R ,

where Z is a r.v. with cdf P[Z ≤ x ] = 1−
f (x)

f (0+)
and z1,...,zN

roots of Equation

1 +
z

f (0+)p
= E[ezZ ], z ∈ C,

with positive real part.
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Thank you !
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