Asymptotic expansion for renewal functions, with application.

C.Dombry and L.Rabehasaina
Laboratoire de Mathématiques
Besançon, Université de Franche Comté, France.

AMMSI Workshop, Troyes, Jan. 29-30 2015

Content

Introduction and Notation

Expansion of order 1 and 2

Expansion of order N, light tailed case

Application to a replacement model

Content

Introduction and Notation

Expansion of order 1 and 2

Expansion of order N, light tailed case

Application to a replacement model

Framework

$\left(X_{k}\right)_{k \in \mathbb{N}}$ i.i.d. ≥ 0 with c.d.f. $F().$.
Renewal process N defined by

$$
N(x):=\sup \left\{n \geq 0 \mid S_{n}:=\sum_{j=1}^{n} x_{j} \leq x\right\}, \quad x \geq 0
$$

and associated renewal function

$$
U(x):=\mathbb{E}[N(x)]=\sum_{n=1}^{\infty} \mathbb{P}\left[S_{n} \leq x\right]=\sum_{n=1}^{\infty} F^{*(n)}(x), \quad x \geq 0
$$

Framework

$U(x)=$ mean number of occurances of a certain recurrent event before time x.
\longrightarrow behaviour as $x \rightarrow \infty$?

In what follows, two cases :

- X_{k} 's lattice $\left(\Longleftrightarrow X_{k}\right.$ with values in $d \mathbb{N}$ for some $d, d=1$ onward),
- X_{k} 's non lattice.

Content

Introduction and Notation

Expansion of order 1 and 2

Expansion of order N, light tailed case

Application to a replacement model

Expansion of order 1

If X_{1} admits a first moment μ then Blackwell's "elementary" renewal theorem \Longrightarrow

$$
\begin{aligned}
& U(x+h)-U(x) \longrightarrow \frac{h}{\mu}, \quad x \rightarrow+\infty, x \in \mathbb{R}_{+}, \quad h>0, \quad \text { (non lattice) }, \\
& U(k+1)-U(k) \longrightarrow \frac{1}{\mu}, \quad k \rightarrow+\infty, k \in \mathbb{N}, \quad \text { (lattice). }
\end{aligned}
$$

Hence first order expansion :

$$
U(x) \sim \frac{x}{\mu}, \quad x \rightarrow \infty
$$

Expansion of order 2

If X_{1} admits a second moment $\mu_{2}=\mathbb{E}\left[X_{1}^{2}\right]$ then second order expansion (e.g. Feller (1965))

$$
U(x)=\left\{\begin{array}{cc}
\frac{x}{\mu}+\frac{\mu_{2}}{2 \mu^{2}}+o(1), & \text { non lattice } \\
\frac{x}{\mu}+\frac{\mu_{2}+\mu}{2 \mu^{2}}+o(1), & \text { lattice. }
\end{array} \quad \text { as } x \rightarrow \infty,\right.
$$

One even has $U(x)-\frac{x}{\mu} \geq 0, \forall x \geq 0$.

The o(1) term

We set $v(x):=U(x)-\frac{x}{\mu}-\frac{\mu_{2}}{2 \mu^{2}}$. (non lattice)
\longrightarrow Behavior of $v(x)$ as $x \rightarrow \infty$?

- Stone (1965) : in the case where X_{1} is light tailed $\left(\Longleftrightarrow \mathbb{E}\left[e^{R_{0} X_{1}}\right]<+\infty\right.$ for some $\left.R_{0} \in(0,+\infty]\right)$ then

$$
v(x)=O\left(e^{-r x}\right), \quad x \rightarrow+\infty
$$

for some $r>0$.

- Asmussen (1995) : in the case where X_{1} has rational Laplace Transform then Explicit expression of $v(x)$ (i.e. of $U(x)$).
- Mitov and Omey (2014) provide intuitive approximations of $U(x)$, and in particular of the $v(x)$ term, for a large class of X_{1}.

Content

Introduction and Notation

Expansion of order 1 and 2

Expansion of order N, light tailed case

Application to a replacement model

Theorem (Dombry, R. (2014))

Let us suppose that X_{1} is non lattice, light tailed with $\mathbb{E}\left[e^{R_{0} X_{1}}\right]<+\infty$, and satisfies the following assumption :
(A) the equation $g(z):=\mathbb{E}\left[e^{z X_{1}}\right]=1$ has a finite number of solutions in $S_{R_{0}}=\left\{z \in \mathbb{C}, 0<\Re(z)<R_{0}\right\}$.

Let $z_{0}=0, z_{1}, \ldots, z_{N}$ be these solutions. Then, for all $r<R_{0}$,

$$
v(x)=\sum_{j=1}^{N} \rho_{j} e^{-x \Re\left(z_{j}\right)} \cos \left(x \Im\left(z_{j}\right)+\varphi_{j}\right)+o\left(e^{-r x}\right), \quad \text { as } x \rightarrow+\infty,
$$

In the case $g^{\prime}\left(z_{j}\right) \neq 0, \rho_{j}$ and $\varphi_{j} \in(-\pi, \pi]$ are such that $\rho_{j} e^{i \varphi_{j}}=\frac{1}{z_{j} g^{\prime}\left(z_{j}\right)}$.

The result, lattice case

Theorem (Dombry, R. (2014), Ct'd)

Let us suppose that X_{1} is lattice, light tailed $R_{0} \in(0,+\infty]$.
Let $z_{0}=0, z_{1}, \ldots, z_{N}$ the solutions of the equation
$g(z):=\mathbb{E}\left[e^{z X_{1}}\right]=1$ in the domain
$S_{R_{0}}=\left\{z \in \mathbb{C} ; 0<\Re(z)<R_{0},-\pi \leq \Im(z) \leq \pi\right\}$. Then, for all $r<R_{0}, v(k)$ has the asymptotic expansion
$v(k)=\sum_{j=1}^{N} \rho_{j} e^{-k \Re\left(z_{j}\right)} \cos \left(k \Im\left(z_{j}\right)+\varphi_{j}\right)+o\left(e^{-r k}\right), \quad k \rightarrow+\infty, k \in \mathbb{N}$,
In the case $g^{\prime}\left(z_{j}\right) \neq 0, \rho_{j}$ and $\varphi_{j} \in(-\pi, \pi]$ are such that $\rho_{j} e^{i \varphi_{j}}=\frac{1}{\left(e^{z_{j}}-1\right) g^{\prime}\left(z_{j}\right)}$.

Prior comments

Main practical issue is solve $g(z)=1$ with $g(z):=\mathbb{E}\left[e^{z X_{1}}\right]$

$S_{R_{0}}$ domain, non lattice

$S_{R_{0}}$ domain, lattice

No trivial solution in \mathbb{C} (except $z=0)$.
E.g. $X_{1} \sim \mathcal{U}([0,1])$ we get to solve

$$
e^{z}=z+1, \quad z \in \mathbb{C}
$$

Elements of Proof (lattice case), Stone (1965) revisited

Recall that $v(k):=U(k)-\frac{k}{\mu}-\frac{\mu_{2}+\mu}{2 \mu^{2}}$ and that X_{1} concentrated on \mathbb{N}.

Set $S_{n}=\sum_{j=1}^{n} X_{j}, S_{0}=0$, and

$$
u_{k}:=\sum_{n=0}^{\infty} \mathbb{P}\left[S_{n}=k\right]=U(k)-U(k-1), \quad k \in \mathbb{N} .
$$

Step 1 : one proves that

$$
u_{k}-\frac{1}{\mu}=\frac{1}{2 \mu}+\frac{1}{2 \pi} \int_{-\pi}^{\pi} \Re\left(e^{-i k \theta}\left[\frac{1}{1-g(i \theta)}-\frac{1}{\mu} \frac{1}{1-e^{i \theta}}\right]\right) d \theta
$$

(recall that $g(i \theta)=\mathbb{E}\left[e^{i \theta X_{1}}\right]$)

Elements of Proof (lattice case), Stone (1965) revisited

Step 2 : Integrate $z \mapsto \frac{1}{1-\mathbb{E}\left[e^{i \theta X_{1}}\right]}-\frac{1}{\mu} \frac{1}{1-e^{i \theta}}$ on contour ∂S_{r} for $r<R_{0}$ and use Theorem of Residue in order to get

$$
u_{k}-\frac{1}{\mu}=-\sum_{j=1}^{N} \Re\left[\frac{e^{-k z_{j}}}{g^{\prime}\left(z_{j}\right)}\right]+o\left(e^{-r k}\right)
$$

(in the case $g^{\prime}\left(z_{j}\right) \neq 0$, for ease of presentation...).

Step 3 : use the fact that

$$
v(k)=\sum_{m=0}^{\infty}[-v(k+m+1)+v(k+m)]=\sum_{m=0}^{\infty}\left[-u_{k+m+1}+1 / \mu\right]
$$

then conclude.

Content

Introduction and Notation

Expansion of order 1 and 2

Expansion of order N, light tailed case

Application to a replacement model

The (simple) model

- Component with generic lifetime distribution L
- Replaced at each failure time with new component with probability $p \in(0,1)$.

Total Lifetime : $T=\sum_{k=1}^{\nu} L_{k}$, where L_{1}, L_{2}, \ldots i.i.d. and $\nu \sim \mathcal{G}(1-p)$.

Laplace Transform of $T, \mathbb{E}[T], \operatorname{Var}(T)$ computable, what about survival function?

Estimate for lifetime survival function

Set

$$
\bar{H}(x):=\mathbb{P}[T>x]=\mathbb{P}\left[\sum_{k=1}^{\nu} L_{k}>x\right]
$$

\longrightarrow Expansion of $\bar{H}(x)$ as $x \rightarrow \infty$?

Main Assumption :

- L bounded by some $M>0$,
- density $f(x)$ of L is decreasing (e.g. holds if DFR).

Estimate for lifetime survival function

In that case we have the expansion for some R large enough

$$
\bar{H}(x)=\sum_{j=1}^{N} \Re\left[\frac{1-1 / p}{1 / p-f(0+) \mathbb{E}\left[Z e^{z_{j}} z\right]} e^{-x z_{j}}\right]+o\left(e^{-r x}\right), \quad \forall r>R
$$

where Z is a r.v. with $\operatorname{cdf} \mathbb{P}[Z \leq x]=1-\frac{f(x)}{f(0+)}$ and z_{1}, \ldots, z_{N} roots of Equation

$$
1+\frac{z}{f(0+) p}=\mathbb{E}\left[e^{z Z}\right], \quad z \in \mathbb{C}
$$

with positive real part.

Thank you!

